Assignment 10

This homework is due Wednesday, December 7th.

There are total 38 points in this assignment. 34 points is considered 100%. If you go over 34 points, you will get over 100% for this homework (up to 115%) and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper. Your solutions should contain full proofs/calculations (unless stated otherwise in the problem). Bare answers will not earn you much.

This assignment covers sections 7.1, 7.3, 7.4 in O'Neill.

- (1) (Part of 7.1.1) Let M be a region of \mathbb{R}^2 with inner product $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v} \cdot \mathbf{v} / h^2$, h > 0. Show that:
 - (a) [2pt] Angle between vectors \mathbf{v}, \mathbf{w} in the sense of $\langle \cdot, \cdot \rangle$ coincides with the angle between them in the sense of Euclidean dot product \bullet . (Note: hence, the terminology: such geometric surface is called *conformal* with *ruler function* h.)
 - (b) [2pt] The speed of curve $\alpha = (\alpha_1, \alpha_2)$ is $\sqrt{{\alpha'_1}^2 + {\alpha'_2}^2}/h(\alpha)$.
 - (c) [2pt] hU_1 , hU_2 is a frame field with dual 1-forms du/h, dv/h.
- (2) (Part of 7.1.2, 7.3.1) The *Poincaré half-plane* is the upper half plane v > 0 in (u, v)-plane \mathbb{R}^2 with metric $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v} \cdot \mathbf{w} / v^2$. If α is a curve $(r \cos t, r \sin t)$, $0 < t < \pi$, with constant r > 0,
 - (a) [3pt] show the speed of α is csc t. (Note: in particular, does not depend on r.)
 - (b) [2pt] Deduce that although the Euclidean length of α is πr , its Poincaré length is infinite.
 - (c) [3pt] Show that the connection form of the frame field $E_1 = vU_1, E_2 = vU_2$ is $\omega_{12} = du/v = \theta_1$.
 - (d) [3pt] Express velocity and acceleration of the curve α in terms of E_1, E_2 (α as defined above).
 - (e) [3pt] Express velocity and acceleration of for the Euclidean straight line $\beta(t) = (ct, st)$ in terms of E_1, E_2 , $(c, s \text{ are constants such that} c^2 + s^2 = 1$, and values of t are such that st > 0). Verify calculations by checking that $\langle \beta', \beta' \rangle' = 2\langle \beta', \beta'' \rangle$.
- (3) (7.1.4) (Coordinate definition of a metric.)
 - (a) [4pt] If a, b, c are numbers such that $a > 0, c > 0, ac b^2 > 0$, then the formula

 $\langle \mathbf{v}, \mathbf{w} \rangle = av_1w_1 + b(v_1w_2 + v_2w_1) + cv_2w_2$

defines an inner product on \mathbb{R}^2 . (*Hint:* To prove positive definiteness, consider $(v_1\sqrt{a} \pm v_2\sqrt{c})^2 \ge 0$ and compare it to the required inequality.)

- see next page -

(b) [4pt] Let $\mathbf{x} : D \to M$ be a coordinate patch in an abstract (generally speaking, not geometric) surface M. Given differentiable functions $E, F, G : D \to \mathbb{R}$ such that

 $E>0, \quad G>0, \quad EG>F^2,$

prove that there is a unique metric $\langle \cdot, \cdot \rangle$ on the image of **x** such that

 $E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle, \quad F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle, \quad E = \langle \mathbf{x}_v, \mathbf{x}_v \rangle.$

- (4) [3pt] (7.4.2) If $\gamma_{\mathbf{v}}$ is the unique geodesic in M with initial velocity \mathbf{v} , show that for any number $c, \gamma_{c\mathbf{v}} = \gamma_{\mathbf{v}}(ct)$ for all t.
- (5) (7.4.6) In the projective plane P(r) of radius r (sphere $\Sigma(r)$ of radius r with identified antipodal points), prove:
 - (a) [3pt] The geodesics are simple (non self-intersecting) closed curves of length πr .
 - (b) [2pt] There is a unique geodesic route through any two distinct point.
 - (c) [2pt] Two distinct geodesic routes meet in exactly one point.

(*Hint:* Within "small" patch (here, "small" means that image of patch fits inside a hemisphere), geometries of sphere $\Sigma(r)$ and P(r) are the same.)